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Abstract. In this paper we propose a form of the DIRECT algorithm that is strongly biased toward
local search. This form should do well for small problems with a single global minimizer and only a
few local minimizers. We motivate our formulation with some results on how the original formulation
of the DIRECT algorithm clusters its search near a global minimizer. We report on the performance
of our algorithm on a suite of test problems and observe that the algorithm performs particularly well
when termination is based on a budget of function evaluations.
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1. Introduction

The DIRECT (DIviding RECTangles) algorithm [13, 14] is a pattern search method
(in the sense of [17]) that balances local and global search in a attempt to efficiently
find a global optimizer. Other deterministic sampling methods, such as implicit
filtering [9, 15], MDS [6], Hooke-Jeeves [10], or Nelder-Mead [16], drive an ap-
proximate gradient to zero and are not designed for global search. DIRECT, on
the other hand, is designed to completely explore the variable open space, even
after one or more local minima have been identified. This feature has even been
exploited to generate initial iterates for other sampling methods [3].

In this paper we propose a form of the DIRECT algorithm that is more biased to-
ward local search. This form should do well for small problems with a single global
minimizer and only a few local minimizers. We motivate our formulation with
some results on how the original formulation of the DIRECT algorithm clusters
its search near a global minimizer. We then illustrate the performance of the new
approach on a set of test problems.

We consider bound-constrained global optimization problems

min
x∈� f (x) (1.1)

� This research was supported by National Science Foundation grants #DMS-0070641 and
#DMS-9714811. Computing activity was partially supported by an allocation from the North
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where � ⊂ RN is a hyperrectangle. DIRECT’s performance is independent of the
scaling of � and problems are typically scaled so that

� = {x|xi ∈ [0, 1]}, (1.2)

where xi is the ith component of the vector x.
The algorithm begins with a single hyperrectangle � and, at each sweep, up-

dates a set S of hyperrectangles by dividing some of its members. Each hyperrect-
angle S∈S has side length 3−l (long directions) or 3−l−1 (short directions) for some
l � 0 and f has been evaluated at the center. The decision to divide S is based on
its size and the value of f at the center. When S is divided, f is first evaluated
at points midway (along the long coordinate directions) between the center c and
the boundary of S. S is divided into three parts along the long coordinate direction
corresponding to the second smallest function value in the stencil. The subrectangle
containing c is divided again along the long coordinate direction corresponding to
the second smallest function value in the stencil. This process continues until each
point on the stencil is the center of a new hyperrectangle. The rule for tie-breaking
is not important and we use the order of the coordinates.

The formulation in [13, 14] begins by evaluating f at the center of � and
dividing � according to the rule described above. The new set S consists of the
small hyperrectangles that came from that division. The new hyperrectangles are
identified with their centers. Any or all of the hyperrectangles may be divided
again if the value of f at the center is sufficiently small relative to the size of
the hyperrectangle. The algorithm continues in this way, always dividing based on
the function value and the size of a hyperrectabgle, until a given budget of function
evaluations in exhausted.

The description given above needs to be expanded for our purposes. Any hy-
perrectangle will be divided along a side of maximum length. Hence if the longest
side has length 3−l , the shortest side will be at least of length 3−l − 1. A rectangle
has level l if the length of the longest side is 3−l . A rectangle of level l is at stage
0 ≤ p ≤ N − 1 (i.e. is the result of p subdivisions of a cube of side length 3−l) if
N − p sides have length 3−l and p have length 3−l−1.

The formulation in [13, 14] groups rectangles by level and stage by grouping
all hyperrectangles having the same diameter. The �2 diameter of a hyperrectangle
with level l and stage p is

d(l, p) =

 p∑

k=1

3−2l−2 +
N∑

k=p+1

3−2l




1/2

= 3−l (N − 8p/0)1/2.

So, after L sweeps of DIRECT, hyperrectangles with at most NL different diamet-
ers have been created.

The implementation in [8] groups hyperrectangles by the �∞ diameter, i.e. the
length of the longest side. This grouping has fewer groups and, therefore, biases
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the search more toward local exploration near good points rather than global search
in regions of � that have been sampled sparsely. The purpose of this paper is to
motivate that variation of DIRECT and illustrate its performance by numerical
examples.

The results in this paper apply to both methods of categorizing hyperrectangles.
If we group by �2 diameter we define the size of a hyperrectangle with level and
stage l and p as

σ2 = d(l, p)/2, (1.3)

and if we group by �∞ we define the size as

σ∞ = 3−l/2. (1.4)

The two modes of grouping can be described as grouping by size.
A hyperrectangle S with center c = c(S) and size σ = σ (S) is potentially

optimal if there is a value of the Lipschitz constant of f that is consistent with
the optimal point being inside the hyperrectangle and the potential improvement is
nontrivial.

The first condition means that there is K̃ such that

f (c) − K̃σ ≤ min
Ŝ

(
f (c(Ŝ)) − K̃σ (Ŝ)

)
, (1.5)

where the minimum is taken over all hyperrectangles Ŝ. There is a simple and
efficient way to test for (5) [14]. For the purposes of this paper it suffices to point
out that if a hyperrectangle with center c and size σ satisfies (5), then no rectangle
with the same size can have a lower function value at the center i.e.

f (c) = min
{S|σ(S)=σ }

f (c(S)).

The potential improvement is nontrivial if

f (c) − K̃σ � fmin − ε|fmin|, (1.6)

where K̃ alo satisfies (5). In (6) ε is a parameter in the algorithm and fmin is the
minimum value of f found so far in the iteration

fmin = min
S

f (c(S)).

The role of the parameter ε is to avoid oversampling near points with low function
values and bias the sampling toward global search. Such a bias is important if there
are many local minima or N is large. Values of ε ∈ [10−7,10−3] are reported to
work well in [14] and

ε = max(10−4|fmin, 10−8) (1.7)
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is recommended in [13].
A sweep of DIRECT identifies the potentially optimal hyperrectangles from the

previous sweep and then divides each of them once. Then a new set of potentially
optimal hyperrectangles is identified. Both the DIRECT algorithm from [13, 14]
and the locally biased version are sequences of these sweeps.

There is little convergence theory for DIRECT beyond the observation from
[14] that the search will eventually sample arbitrarily near every point in �. The
method has been applied to optimal design of gas pipe lines [3–5] and aerospace
engineering [1, 2] and seems to perform well, especially in the early stages of an
optimization.

In this paper we quantify how the subdivisions cluster near a global minimizer
and use this result to motivate an alternative version of DIRECT [8], which is
different from that in [13, 14] in that the �∞ norm is used to form the groups and
at most one hyperrectangle from each group is subdivided, even if there are more
than one potentially optimal hyperrectangle in a group.

2. Local Clustering

2.1. ELEMENTARY PROPERTIES OF DIRECT

The state S of DIRECT is the set of all hyperrectangles at a given sweep of the
optimization. If S is the state of DIRECT, two special classes of hyperrectangles
are guaranteed to be potentially optimal.

LEMMA 1. If S ∈ S has maximal size and f (c(S)) has the smallest value among
centers of hyperrectangles in S of maximal size, i.e.

σ (S) = max
S∈S

σ (Ŝ and f (c(S)) = min
Ŝ∈S,σ (Ŝ)=σ(S)

f (C(Ŝ)) (2.8)

then S satisfies (5).

Proof. Let σ = σ (s) and c = c(S). We will find K̃ such that

f (c) − K̃σ � f (c(Ŝ)) − K̃σ (Ŝ) (2.9)

for all Ŝ ∈ S . This will imply (5) for K̃ sufficiently large. Increasing K̃ if needed,
will imply (6), and hence potential optimality.

Now, let Ŝ ∈ S, σ̂ = σ (Ŝ), and ĉ = c(Ŝ); by assumption σ̂ � σ .
We consider three cases. If σ̂ = σ (Ŝ) = σ then (8) implies that f (c) �

f (c(σ̂ )). Hence (5) holds for any K̃ .
If σ̂ < σ and f (c) ≤ f (ĉ) then (5) also holds for any K̃ .
Finally, if σ̂ < σ and f (c) > f (ĉ), then (5) holds for any

K̃ � max
f (c) − f (ĉ)

σ − σ̂
,
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where the maximum is taken over all Ŝ ∈ S such that σ̂ < σ and f (c) > f (ĉ).
Hence (9) holds for sufficiently large K and the proof is complete.
If ε is too large, the search will be strongly biased toward global exploration.

This will delay refinement near a global minimum. Lemma 2.2 quantifies this state-
ment by giving an upper bound on ε that will guarantee good local exploration.
This upper bound (13) combines the two conditions for potential optimality in a
way that includes the largest rectangles having the minimum value at the center.
(13) is not a significant restriction in practice.

LEMMA 2. If f (c(S)) = fmin, the smallest value at all the centers, and σ (S) is
the largest among all rectangles having the same value at the center, i.e.

f (c(S)) = min
s∈S

f (c(Ŝ)) and σ (S) = max
Ŝ∈S,f (c(Ŝ))=fmin

σ (Ŝ) (2.10)

then S is potentially optimal if ε is sufficiently small.

Proof. As before we let σ = σ (S) and c = c(S). Since f (c) = fmin, (6) holds
if

ε � K̃σ

fmin
. (2.11)

We now verify that (5) holds.
Let Ŝ ∈ S, σ̂ = σ (Ŝ), and ĉ = c(Ŝ). If σ̂ � σ , then (5) holds for all K̃ � 0

since f (c) = fmin. If f (ĉ) = fmin then (10) implies that (5) holds for all K̃ � 0.
The remaining case is σ̂ > σ and f (ĉ) > f (c) = fmin. In that case (5) holds for

K̃ � min
f (ĉ) − fmin

σ̂ − σ
(2.12)

where the minimum is taken over all Ŝ ∈ S such that σ̂ > σ and f (c) < f (ĉ).
Combining (11) and (12) we see that the bound on ε is

ε � σ

fmin
min

f (ĉ) − fmin

σ̂ − σ
. (2.13)

2.1.1. Local Clustering Theory

In this section we discuss some consequences of Lemma 2.2 that show how, if there
is a single global minimizer, the subdivisions become refined near that minimizer
as the sweeps progress. We let Sn be the state of DIRECT after n sweeps. We will
quantify the progress to optimality in terms of the minimum value of f in the nth
sweep

f n
min = min

S∈Sn

f (c(S)).
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The minimum is attained on the non-empty set

Sn
min = {S ∈ Sn|f (c(S)) = f n

min}.
Let

vn = max
S∈Sn

min

σ (S). (2.14)

Let

T n = {S ∈ Sn
min|σ (S) = vn}. (2.15)

The hyperrectangles in T n are the ones that Lemma 2.2 identifies as potentially
optimal.

The hyperrectangles and their centers can cluster in one of three ways. The
number of hyperrectangles in T n can increase, vn can decrease, or the f n

min can
decrease. However, these three do not need to happen simultaneously in a single
sweep. Our clustering result Theorem 2.1 characterizes how at least one of the three
modes of clustering must occur in each sweep.

THEOREM 1. For all n every S ∈ T n is potentially optimal while (11) holds.
Moreover, at least one of

f n+1
min < f n

min, (2.16)

VN+1 � vn/3, (2.17)

or

|Sn+1
min | > |Sn

min|, (2.18)

holds.

Proof. vn+1 > vn/3 implies that f n+1
min is attained in a hyperrectangle that is not

the result of a subdivision of any member of T n. Hence either f n+1
min < f n

min or
the minimum value is the same and a new hyperrectangle with the minimum value
f n+1
min = f n

min at the center has been created. This completes the proof.

2.2. LOCALLY-BIASED FORMULATION

As one can see from the discussion above, the density of the subdivisions will
increase near a global minimizer. However, the cost of a sweep can be dominated
by global search.

If one knows that there are only a few local minima, then biasing the search
more toward local improvement can reduce the cost of a sweep and more rapidly
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identify the global minimum. Such a modification is likely to be more useful for
small N , as for larger N more work will be needed in the global search even to
explore the design space at a coarse level [1, 2].

A globally-biased version of direct, called aggressive DIRECT, was proposed
in [1]. In that approach the potential optimality condition is abandoned and the
hyperrectangles with the lowest function value in each group are all subdivided.

The formulation from [8] differs from that in [13, 14] in that the hyperrectangles
are grouped by σ∞ and at most one hyperrectangle from each group is subdivided,
even if there are more than one potentially optimal hyperrectangle in some of the
groups. The first of these differences reduces the number of groups and the second
reduces the number of divisions within a group. The idea is that the overall number
of divisions will be reduced and that most of this reduction will be in the large
hyperrectangles that are not near the global optimum. We will refer to this method
as DIRECT-1.

We will illustrate the performance advantages of DIRECT-1 for small problems
with only a few global minima in S3. We close this section by showing that the
conclusions of Theorem 2.1 also hold for DIRECT-1.

COROLLARY 1. For all n every S ∈ T n is potentially optimal while (11) holds.
Moreover, either at least one of (16), (17), or (18) holds, or

T n+1 ⊂ T n and |T n+1| = |T n| − 1. (2.19)

Proof. In DIRECT-1 only one S ∈ T n is selected for subdivision. Hence, if T n

has more than one element, only one will be divided. If one of the new, smaller,
rectangles is not potentially optimal, then (19) will hold. This is the only difference
from the proof of Theorem 2.1.

3. Numerical Results

We compare two formulations of DIRECT, the original formulation from [14] and
a strongly locally-biased form. The differences in the algorithms are summarized
in Table 1.

Table I. Two formulations of DIRECT

Formulation DIRECT DIRECT-1

σ σ2 σ∞
ε 10−3 10−3

Division all potentially optimal hyperrectangles one potentially optimal hyperrectangle

at each level

Subdivision Order [14], pg 169 [14], pg 169
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In Table 2 we list the test functions we used in our numerical experiments. We
give the name of the function, the dimension of the problem, the domain over which
the function is defined, the number of global minima, and the global minimal value.

Table II. Test Problems

# Name N � Global minima

number function value

1 Branin 2 [−5,10]×[0,15] 3 0.398

2 Shekel-5 4 [0, 10]4 1 −10.153

3 Shekel-7 4 [0, 10]4 1 −10.403

4 Shekel-10 4 [0, 10]4 1 −10.536

5 Hartman-3 3 [0,1]3 1 −3.863

6 Hartman-6 6 [0, 1]6 1 −3.322

7 Goldprice 2 [−2, 2]2 1 3.000

8 Sixhump 2 [−3, 3]×[−2, 2] 2 −1.032

9 Shubert 2 [−10, 10]2 18 −186.831

The first seven problems were taken from [7]. These problems have been widely
used to compare global optimization algorithms [11, 12, 14]. Problems eight and
nine are from [18]. These nine test problems were used in [14] to test the original
implementation of DIRECT.

We report comparisons of DIRECT and DIRECT-1 in Tables 3 and 4. Our test
problems are small and the computer time for a function evaluation is, for most of
the problems, not a factor in the computer time for the entire optimization. The is
different from the case for many practical problems, where functions evaluations
are expensive. We and others [1, 2, 14] think that counting function evaluations is
a more effective way to compare methods.

3.1. TERMINATION BASED ON THE GLOBAL MINIMUM

In Table 3 we report on the performance of the two variants of DIRECT using the
termination criterion from [14], which uses knowledge of the global minimum. Let
fglobal be the known global minimal function value and denote by fmin the best
function value found by DIRECT. We can then define the percent error p as

p = 100

{
fmin−fglobal

|fglobal | , fglobal �= 0,

(fmin − fglobal), fglobal = 0,

and terminate the iterations once p is lower than 10−2 or over 20 000 function
evaluations have been completed at the end of a sweep.
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Table III. Numerical results with percentage termination criteria

Problem N DIRECT DIRECT-1

f-eval. Time p f-eval. Time p

1 2 195 0.023 0.98E-03 159 0.024 0.98E-03

2 4 155 0.024 0.84E-02 147 0.024 0.84E-02

3 4 145 0.024 0.93E-02 141 0.024 0.93E-02

4 4 145 0.025 0.97E-02 139 0.024 0.97E-02

5 3 199 0.024 0.85E-02 111 0.024 0.85E-02

6 6 571 0.028 0.89E-02 295 0.026 0.89E-02

7 2 191 0.024 0.30E-02 115 0.023 0.30E-02

8 2 285 0.024 0.48E-03 191 0.024 0.48E-03

9 2 2967 0.060 0.50E-02 2043 0.055 0.50E-02

Both the original DIRECT and our modification find an acceptable solution
for all of the problems. Note that our modification always needs less function
evaluations, significantly less for problems 5 through 9.

These results emphasize our earlier observations. Our modification should be
used for lower dimensional problems, which do not have too many local and global
minima. We believe that the original DIRECT or even the more aggressive version
from [1] is the better choice for higher dimensional problems.

3.2. TERMINATION ON A BUDGET

In Table 4 we show the results when we give both methods a budget of 100 function
evaluations. We implement this by examination of the number of function evalu-
ations completed after each sweep and terminate the optimization when the budget
has been exhausted. Since sweeps are not stopped before completion, the number
of function evaluations will exceed the budget. This kind of termination criterion
is what would be used in practice.

The results of both versions of DIRECT are nearly identical for problems 2–4,
and 9. This is consistent with the results with the percentage termination criteria
shown in Table 3. The original DIRECT algorithm finds a much better point than
DIRECT-1 on problem 8.

For problems 1 and 5–7, DIRECT-1 finds significantly better points with about
the same number of function evaluations as the original DIRECT algorithm. To
summarize, for all problems other than problem 8 DIRECT-1 finds a better solu-
tion than the original DIRECT algorithm with about the same number of function
evaluations.
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Table IV. Numerical results with a budget of 100 function evaluations

Problem N DIRECT DIRECT-1

f-eval. Time p f-eval. Time p

1 2 117 0.024 0.84E-01 103 0.023 0.39E-01

2 4 103 0.024 0.59E+00 107 0.024 0.59E+00

3 4 107 0.024 0.58E+00 101 0.024 0.58E+00

4 4 107 0.024 0.56E+00 117 0.024 0.41E+00

5 3 113 0.024 0.15E+00 111 0.024 0.85E-02

6 6 101 0.024 0.27E+02 109 0.024 0.23E+01

7 2 101 0.023 0.25E+00 101 0.023 0.27E-01

8 2 113 0.023 0.79E+00 111 0.023 0.16E+01

9 2 101 0.024 0.83E+02 103 0.024 0.82E+02

The numerical experiments were done on a Sun Ultra 10 workstation with
a UltraSPARC-IIi processor with 440 MHz and 256 MByte of RAM, running
SOLARIS version 5.6. The software was compiled using Sun WorkShop Compiler
FORTRAN 77 5.0. The run times in the tables are given in seconds.

4. Conclusion

DIRECT-1 is a modification of the DIRECT [14] algorithm that biases the search
toward exploration near local minima. The algorithm was designed for low-dimensional
problems with only a few global minima. Our experimental results show that DIRECT-
1 performs well for such problems and particularly well when termination is based
on a low budget of function evaluations.

5. Acknowledgements

The authors are grateful to Richard Carter, Evin Cramer, Don Jones, and Layne
Watson for sharing their insights on the performance and implementation of DIR-
ECT.

References

1. Baker, C.A., Watson, L.T., Grossman, B., Haftka, R.T. and Mason, W.H. (1999a), Parallel
Global Aircraft Configuration Design Space Exploration, (preprint).

2. Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H. Cox, S.E. and Haftka, R.T. (1999b),
Study of a Global Design Space Exploration Method for Aerospace Vehicles, (preprint).

3. Carter, R., Gablonsky, J.M., Patrick, A., Kelley, C.T. and Eslinger, O.J. (2000), Algorithm for
Noisy Problems in Gas Transmission Pipeline Optimization. Technical Report CRSC-TR00-10,
North Carolina State University, Center for Research in Scientific Computation.



A LOCALLY-BASED FORM OF THE DIRECT ALGORITHM 37

4. Carter, R.G. (1998), Pipeline optimization: dynamic programming after 30 years. Proceedings
of the Pipeline Simulation Interest Group, Denver Colorado, Paper number PSIG-9803.

5. Carter, R.G. (1999), Private communication.
6. Dennis, J.E. and Torczon, V. (1991), Direct Search Methods on Parallel Machines, SIAM J.

Optim. 1: 448–474.
7. Dixon, L. and Szegö, G. (1978), The Global Optimisation Problem: An Introduction, In: L.

Dixon and G. Szegö (eds.), Towards Global Optimization 2, Vol. 2, North-Holland Publishing
Company, pp. 1–15.

8. Gablonsky, J. (1998), An Implementation of the DIRECT Algorithm. Technical Report CRSC-
TR98-29, North Carolina State University, Center for Research in Scientific Computation.

9. Gilmore, P. and Kelley, C.T. (1995), An implicit filtering algorithm for optimization of
functions with many local minima, SIAM J. Optim. 5: 269–285.

10. Hooke, R. and Jeeves, T.A. (1961), ‘Direct search’ solution of numerical and statistical
problems, Journal of the Association for Computing Machinery 8: 212–229.

11. Huyer, W. and Neumaier, A. (1999), Global optimization by multilevel coordinate search, J.
Global Optim. 14(4): 331–355.

12. Janka, E. (1999), Vergleich Stochastischer Verfahren zur Globalen Optimierung. Diplomarbeit,
Universität Wien.

13. Jones. D.R. (1999), The DIRECT Global Optimization Algorithm, to appear in the Encyclope-
dia of Optimization.

14. Jones, D.R., Perttunen, C.C. and Stuckman, B.E. (1993), Lipschitzian Optimization without the
Lipschitz Constant, J. Optim. Theory Appl. 79: 157–181.

15. Kelley, C.T. (1999), Iterative Methods for Optimization, No. 18 in Fromtiers in Applied
Mathematics. SIAM, Philadelphia.

16. Nelder, J.A. and Mead, R. (1965), A simplex method for function minimization, Comput. J. 7:
308–313.

17. Torczon, V. (1997), On the convergence of pattern search algorithm, SIAM J. Optim. 7: 1–25.
18. Yao, Y. (1989), Dynamic Tunneling Algorithm for Global Optimization, IEEE Transactions on

Systems, Man, and Cybernetics 19(5).




